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We compute the asymptotic structure factor S (k,?) of the O(n) model for n <d, where d and n are the
dimensions of space and of the order parameter, respectively. Topological defects in the field lead to the
power-law tail S (k,?)= A (n,d)p(t)k ~ld+n where p is the defect density. The amplitude 4 (n,d) is cal-
culated exactly using purely geometrical arguments based on the defect field.

PACS number(s): 64.60.Cn, 64.60.My

In recent years there has been growing interest in the
phase ordering kinetics of systems with continuous, as
well as discrete, symmetry [1-7]. Interest has been fo-
cused primarily on the scaling regime which emerges at
long times after a quench into the ordered phase from the
high-temperature homogeneous phase [8,9].

The key experimental probe is the structure factor
S(k,t), which is directly measurable in small-angle
scattering experiments. The structure factor and its
Fourier transform, the pair-correlation function C _()r,t),
are defined in terms of the order-parameter field ¢(x,?)
(taken to be an n-component vector) as

S(k,1)={()d_ (D)),

— - (1)
C(r,t)=(d(x,1)-p(x+T1,1)) ,

where Jk(t) is a Fourier component of $(x,t) and angular
brackets indicate an average over initial conditions.

The form of S (k,?) is usually discussed using a scaling
phenomenology [9] in which the structure factor and its
Fourier transform exhibit the scaling forms

S(k,t)=L ()% (kL (2)) , (2)
C(r,t)=f(r/L(1)), (3)

where L () is a characteristic scale which emerges at late
times after the quench. Although the validity of this
“scaling hypothesis” has not been verified from first prin-
ciples (except in some simple limits [10]), it is supported
by a large amount of experimental and simulational evi-
dence.

A recent approximate calculation of S (k,#) for a non-
conserved order parameter (model A), starting from the
time-dependent Ginzburg-Landau equation, predicts [3]
that S (k,?) should exhibit a power-law tail of the form
L(t) "k ~4*" for kL (t)>>1. While the origin of this
tail, whose existence is in accord with simulation results
[2,4,11], was not transparent either from the original
work [3] or subsequent variations [4—6], recent work [12]
has shown that it can be understood simply as a conse-
quence of the existence of topological defects in the
order-parameter field. Thus the k ~¢*" tail is a natural
generalization of Porod’s law [13], the k ~“¢*1) tail ob-
served for a scalar order parameter (i.e., n =1). The
latter has long been understood to follow from the pres-
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ence of sharp domain walls separating domains of the two
pure phases, a domain wall being the simplest topological
defect. For n >1, the topological defects are vortices
(d =2, n=2), strings (d =3, n =2, also called vortex
lines), or monopoles (d =3, n =3, also called hedgehogs).
Such localized defects have a core where the order pa-
rameter vanishes, and only exist for n =d. Extended de-
fects known as textures can also exist for systems with
n =d +1, but this case is more complex and will not be
considered explicitly here.

Assuming that the scaling hypothesis holds, it is in-
structive to consider how the defect density p4.s depends
on the characteristic scale L (¢). By p4s we mean, for ex-
ample, the area of domain wall (n =1), the length of
string (n =2), or the number of monopoles (n =3), per
unit volume. The dimension of p4 is thus (length)™" in
all cases, and py,¢ therefore scales as L (¢) ™ ".

This suggests the following simple derivation [12] of
the power-law tail in S(k,#). For kL (t)>>1, the struc-
ture factor probes length scales short compared to the
characteristic distance [~ L (¢)] between defects. In this
regime, therefore, the total structure factor is essentially
a one-defect property, and S (k, ) should be proportional
to the defect density py., Which itself scales as L (¢)™".
Demanding that the scaling form (3) reproduce this fac-
tor requires that the scaling function g(y) behave as
g (»)~y "4+ for y >> 1, which is the desired result.

While this heuristic argument is very simple and per-
suasive, it hides the underlying mechanism that gives rise
to the tail, namely, the long-range distortion of the
order-parameter field by topological defects. The latter is
the subject of this paper. We show by explicit calculation
that the presence of defects leads to a singular short-
distance behavior in the real-space correlation function
C(r,t), through a term of the form |r|” for n odd (or
noninteger, in a continuation of the theory to real n), and
|r|"In|r| for n even. This in turn implies, through simple
power counting, the power-law tail k~@+m in S(k,1).
The final result for the tail has the form

S(k,t)= A (n,d)pgeck ~@Hm . (4)

The amplitude A (n,d) can be calculated exactly. Itis

d+mn D (n+1)/2)T(d /2)
'(n/2) ’

A(nyd)=L(4m) (5)
T
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This result is consistent with the scaling argument given
above, but is more general. In particular, it does not re-
quire scaling to hold. We note that this exact result pro-
vides both a powerful test of approximate theories and an
experimental tool to measure py;.

To derive Eqgs. (4) and (5), we will start with the con-
ceptually simplest case of point defects, n =d. (For
n =d =2, this approach was discussed briefly in Ref. [6].)
Consider the field ¢ at points x and x+r in the presence
of a point defect at the origin. We consider the case
where |x|, |x+1|, and |r| are all small compared to a
typical interdefect distance L, but large compared to the
defect core size. Then the field at the points x and x+r is
saturated in length, and not significantly distorted by the
presence of other defects. Moreover, the field can be tak-
en, up to a global rotation, to be directed radially out-
ward from the origin. Thus

TNy _ x(x+Tr1)
o(x)-p(x+ )_mlxllxﬂl

where we have taken the equilibrium value of |¢] to be
unity, and we are ignoring thermal fluctuations, i.e.,
working at 7 =0. This restriction will be relaxed below.
With r held fixed we average (6) over all possible relative
positions of the point defect, i.e., over all values of x
within a volume of order L" around the pair of points,
with the appropriate probability density p4. Focusing
on the singular part of the correlation function we obtain

L, | x(x+r)
Coing(H:)=paer [~ d"x |x||x—+|

(6)

(analytic terms)

(7
The (analytic terms) in (7) are included so that the x in-
tegral may be extended over all space. We include as
many terms in the expansion of (6) in powers of r as are
necessary to ensure the convergence of the integral (7).
When n is even, there is a residual logarithmic singulari-
ty. This case can be retrieved from the general n result
by taking a suitable limit (see below). For brevity we will
not write the analytic terms in (7) explicitly: their pres-
ence should be understood in what follows.

Using the integral representation

x| 1= fow (dy /V'my Jexp(—yx?)
for each of the factors in the integrand in (7) yields

C,..(r,t

sing

)= Paef fw dyd exp(-—zrz)

X fd”x x(x+r)
Xexp(—yx*—2zx-r—zx?) .
(8)
We now make the following change of variables:
y=u/v, z=u/(1—v), and x=Vv(l—v)x'—vr. After
some algebra (8) becomes, suppressing the prime,

Pde 1 -
Csing: ;.f fo dU[U(l_U)](n 1)/2

X fow du exp(—ur?)

de"x(xz—rz)exp(—uxz).
9

The integrals over v and x can now be evaluated. The re-
sult is

_ n+1 n+1
Csmg " 2 IB 2 ’ 2 Pdef
X “d —n/2 .2 n_ 2
fo uu exp(—ur”) w T (10)

where B (x,y) is the beta function. Reinstating the ana-
lytic terms from (7) requires us to subtract from the in-
tegrand of (10) as many terms of the expansion in powers
of r? as are required to converge the integral at small u.
The u integral can then be evaluated in terms of I" func-
tions. The final result is

n+1 n+1
2 72

Cyng=nm""*"'B —
2

sing

r pdef|r’n

(11)

The pole in the I'( —n /2) factor for even values of »n sig-
nals a contribution of the form [r|"In(|r|/L) to Cg,, for
those cases. To see how this comes about, we set
n =2m +¢€ in (11), and take the limit e—0. The leading
pole contribution, proportional to € (#2)™, is analytic in
Ir| and therefore does not contribute to Cg,,. The O(1)
term (in the expansion in powers of €) generates the loga-
rithmic correction from the expansion of [r|*” *€. Since,
however, the result in Fourier space is completely smooth
as a function of n, we will not give a separate detailed dis-
cussion for even n.

Using the above result for point defects we can general-
ize our calculation to all n <d. For n <d, the defects are
spatially extended, with dimension (d —n). An impor-
tant observation is that, since the lengths |x|, |[x+r|, and
Ir| of interest are small compared to the scale L that
characterizes the defect structure, the defects can be tak-
en to be flat on these short scales, i.e., a domain wall can
be treated locally as a flat plane, a string as a straight
line, etc. The x vector is then taken to be directed nor-
mal to the defect. The key idea is then to resolve the d-
component r vector into two vectors ry and r,. The r,
vector is a (d —n)-dimensional vector parallel to the de-
fect, whose orientation is specified by the first (d —n) po-
lar angles, while r, is an n-component vector lying in the
n-dimensional subspace perpendicular to the defect, with
orientation specified by the remaining n — 1 polar angles.
If we keep r; fixed (i.e., 6,,0,,...,60,_, are kept fixed),
and average over the remaining n —1 angles associated
with the orientation of r;, then we have effectively re-
duced the problem to one of point defects in the n-
dimensional subspace, with r, playing the role played by
r in the previous calculation. The result of averaging
over the orientation of r, is then given by (11), with |r|”
replaced by |r,|".

The final step is to average over the orientation of r,

e., to average over polar angles 6,,60,,...,0,_,. This
gives, for general n =d,
_ n+1 n+1 n
Csmg nm"/>~'B —2_’ 2 r E Pdef< ‘rl‘n> >

(12)
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where ( ) indicates the angular average. Evaluating the
latter is straightforward, and gives
{|r,|") = (sin"G;sin"G, - - - sin"G, _,, ) |r|"
_ I'(d/2)I'(n)

I'i(d +n)/2)I'(n/2)
Putting (13) into (12) and using B (x,y)=T(x)[(y)/
I'(x +y), where I'(x) is the gamma function, gives the
final result
C. =gn/2-1 T(—n/2)T(d /2)T*(n +1)/2)
sing '((d +n)/2)T(n/2)

[r|” . (13)

pdeflr|n .

(14)
We remarked in the preceding section that for even n the
leading singularity is the form of r"Inr, but the Fourier
transform S (k,?) of Csing(r,t) has the same form for even,
odd, and real n, so we will not consider the even n case
explicitly.

It remains to Fourier transform (14) to obtain the tail
of the structure factor. Simple power counting on (14)
gives immediately the power-law tail S(k,z)~k ~(¢*",
To derive the amplitude we exploit the integral represen-
tation

[(—n/2)|t|"
= fow du u~"?"{exp(—ur?)—(analytic terms)} ,

(15)

where (analytic terms) indicates, once more, as many
terms in the expansion of exp(—ur?) as are necessary to
converge the integral. These terms will not contribute to
the tail of the Fourier transform, and can be dropped
once the transform has been taken. The Fourier trans-
form of (15) is, therefore,

°°d —n/2—1 de —ur?—ik-
fo uu f rexp(—ur*—ik-r)

=472 fo‘” duu—'d +n)/2*lexp( —k2/4y)

d+n
d—+n

— d/2F
m 2

2
% (16)

Inserting the remaining factors from (14) gives the final

result

@ +maL2(n +1)/2)T(d /2) _Paet
I'(n/2)

_1
S(k,0)="—(4m) i

(17)

We note that this expression is smooth as n passes
through the even integers. Equation (17) constitutes the
central result of this Rapid Communication. The gen-
erality of the result cannot be overemphasized: It is in-
dependent of any details of the dynamics, e.g., whether
the order parameter is conserved or nonconserved, and
holds independently of whether the scaling hypothesis is
valid. We note that, as well as providing an exact result
against which to test approximate theories, Eq. (17) can
also be used to determine the defect density experimental-
ly.

We can compare our result for Cg,,, Eq. (14), with
simulation data for C(r,t) presented in Humayun and
Bray [14] for the 2d Ising model, on a square lattice,
quenched to zero temperature. They measure

Cim=1—0.525r/V't, r<<Vt . (18)

To compare this result with (14) we need to know the
domain-wall density p(t), i.e., the length of domain wall
per unit area. This can be determined from the residual
energy, since for an Ising model all the excess energy is
stored in the domain walls. If the bonds have unit
strength, the residual energy per spin is E (¢)=2p(2),
since each broken bond costs energy 2. Humayun and
Bray measure E(#)=1.042/V't [15], implying
p(1)=0.521/V't. Note, however, that since this
definition of p gives the number of broken bonds, it mea-
sures the length of interface using a Manhattan metric on
the square lattice. Equation (14), however, was derived
using a continuum description, corresponding to a Eu-
clidean metric. Fortunately, a simple conversion is possi-
ble. A piece of wall of Euclidean length unity, at an angle
0 to one of the lattice axes, has Manhattan length
(|cosO| +|sin6|). Averaging this over 6 (assuming isotro-
py on large scales [14]) gives the ratio of Manhattan to
Euclidean lengths as 4 /7. Hence the Euclidean wall den-
sity is pp(#)=(m/4)X0.521/V't. Substituting this result
in (14), with d =2 and n =1, gives Cg,,=—0.521r/V't,
in good agreement with (18). Simulations on systems
with vector order parameters are also underway [16].
Preliminary results indicate good agreement with (17),
after correcting for the lattice geometry.

As has been emphasized, the exact result (17) [or,
equivalently, (14)] can be used to test existing theories for
C(r,t). Here we examine theories of the ordering kinet-
ics of nonconserved fields. To establish the units
of time, we will take the dynamics to be governed
by_ the time-dependent Ginzburg-Landau equation
3,0=V2¢—dV($)/dé. The most successful theoretical
approaches [17,18,3-6] are based on the introduction of a
smooth auxiliary field m(r,?) designed to eliminate the
rapid spatial variation of |¢| that occurs near topological
defects (originally [17], near domain walls in a scalar
field). To achieve this, the function ¢(mni) is conveniently
chosen to mimic the equilibrium defect profile function,
so that mi can be interpreted, near defects, as a coordinate
normal to the defect [18,5,6]. In order to make analytical
progress, the field ni is taken to have a Gaussian distribu-
tion, an approach taken to its logical conclusion in the
work of Mazenko [18] and subsequent extensions [5,6].

In order to compare theoretical predictions with (14)
or (17) we need to be able to separately calculate both
C(r,t) and the defect density py.. The latter is given by
Paer={S(M)J [M]), where J[ni] is the Jacobian of the
transformation from the field m to the spatial coordinate
r, e.g., for a scalar field J[m]=|Vm]|. Since, however,
the spatial variation of ni near a defect is the same for all
defects of a given type, it follows that J[m], evaluated at
a defect, is a (calculable) constant, and can be taken out-
side the average to give [19] pur=J(8(m))=JP(0),
where P(mi) is the probability distribution for mi.

Making now the Gaussian assumption for mi, both
C(r,t) and pg4.s can be calculated. One finds [5,6] a scal-
ing solution, with growth law L (t)~¢!/2. The two-point
correlation function has a short-distance singularity of
the form [5,6]
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Gaussi 1 T2(n+1)/2)(—=ns2) | A n/2 . We conclude with a discussion of the universal aspects
Cong 2= . T(n/2) 2di It]",  of the result (17). The derivation given above is restricted

to T =0, in that thermal fluctuations have been ignored.

(19) For T >0 (but T <T,), extended defects (walls, strings,

while the defect density is [19]
Paer=(A/4mt)" /% (20)

and scales as L (z)™", as it should. [For n =1, the d ap-
pearing in (19) has to be replaced by (d —1) [5,6].] In
(19) and (20), A is a parameter of the Mazenko theory re-
lated to two-time correlations [5,6]. In the simpler ap-
proach of Bray and Puri [3], it has the value d /2. Equa-
tion (20) can now be used in (19) to eliminate the explicit
time dependence and derive an equation, analogous to
(14), connecting Cg,, to pyer. Comparing the result with
(14) we obtain the ratio

Cang™™ _T(d+n)/2) |2 o1
coet Td/2) |d|

from which A has dropped out. This ratio is, in general,
different from unity. It does equal unity for n =2, which
is probably not significant, and for d — o, which prob-
ably is: there are other indications [6,20] that these
Gaussian theories become exact for d — .

An alternative way of calculating py.r is to leave the
Jacobian J[ni] inside the average before applying the
Gaussian approximation [21]. Then the result cannot be
written as simply as (20): Indeed, the calculation has not
been performed for general n and d. For the known spe-
cial cases (n=1, all d, and d =3, n =d) the ratio
nggss‘a“ /Cgg' is different from unity, except for n =1.
For d — 0, the two ways of calculating py agree for
n =1. If, as we suspect [20], the Gaussian theories are
exact for d — o, the two methods should agree for all n
in this limit.

etc.) will acquire thermal excitations, and at the same
time thermal fluctuations will reduce the equilibrium or-
der parameter. After coarse graining beyond the thermal
correlation length £, however, the system will be
effectively at low temperature and the previous results
will be recovered for k& <<1 (but kL >>1). The only
modification to (17) is that a factor M%(T) has to be in-
cluded, where M (T) is the magnitude of the equilibrium
order parameter, reduced from its saturated value of uni-
ty by thermal fluctuations. In addition, the defects whose
density is measured by p4.s have to be interpreted as aver-
age defects, obtained by time averaging over thermal fluc-
tuations.

In summary, exact results have been presented for the
tail of the structure factor in systems with topological de-
fects. Our central result, Eq. (17), extends the classic re-
sult of Porod to general O(n) models in arbitrary spatial
dimension. It provides an exact result against which to
test approximate theories, and facilitates experimental
determinations of py A natural question to ask is
whether the k @+ tail in S(k,?) survives in systems
without topological defects. Recent simulation studies
[22] of phase ordering in systems with n >d +1 suggest a
decay for S (k,¢) which is faster than any power law in k.
While analytic solutions for the tail in the defectless case
of n >d +1, and in the case n =d + 1, which admits tex-
tures, are clearly desirable, the results presented above
for n =d have the greatest relevance for the analysis of
experimental data.
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